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ABSTRACT

A new control concept for instrument pointing, tracking and vibration suppression is in-
troduced  based on Zero Annihilation Periodic (ZAP) control, In ZAP control, the control
gains vary periodically in time, in sharp contrast to conventional controllers whose control
gains are fixed in time. The main advantage is that perfect “deadbeat” pointing/tracking
and vibration suppression can be achieved - even in the presence of flexible structural
elcrnents  and non-colocated  actuator/sensor hardware. The deadbeat response has clear
advantages for optical instruments which must be held steady and precisely pointed during
imaging.

The ability of ZAP designs to effectively control noncolocated/nonminimum-phase  con-
figurations opens up many new possibilities for high-performance instrument pointing,
vibration damping, target tracking, and other advanced optics control applications.

1. INTRODUCTION

Optical instruments must be held steady and pointed precisely during imaging. In order to
achieve this, random disturbances and dynamic disturbances must be suppressed. The sup-
pression of random disturbances using feedback is well established [8]. In contrast, dynamic
disturbances arise from flexibility in the mechanical support structure, elastic components,
spacecraft booms/masts, etc. Dynamic disturbances are often the most difficult to remove
since they can involve lightly damped resonances. Hence, in most instrument control de-
signs, no attempt is made to control such disturbances. Instead, it is typical to wait for such
vibrations to subside after each retargeting action, and to accept the resulting settling time
of the pointing system. In certain applications, this may be perfectly acceptable. However,
in other applications (i.e., limited mission time, limited duration imaging opportunities,
etc.,), settling times may be unacceptably long. Furthermore, in applications requiring
perpetual retargeting or real-time tracking, the system may never completely settle, and
such dynamic disturbances impose a fundamental limit on achievable performance.

This paper presents a new method for controlling dynamic disturbances based on Zero
Annihilation Periodic (ZAP) control. The main advantage is that perfect “deadbeat”
pointing/tra&ing  and vibration suppression can bc achieved - even in the presence of
flexible structural elements and non-colocated  actuator/sensor hardware. The ZAP control .
law was introduced in Bayard [3] [4] [5] for controlling nonminimum  phase systems using
stable plant inversion. The general approach is based on the notion of a mathematical
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“lifting” in which a serial-to-parallel conversion is pcrforrncd on the plant input and output
si,gnals,  and mappings are considered between the vcctorized quantities. As a result of using
liftings, the ZAP control gains vary periodically in time, in sharp contrast to conventional
controllers whose control gains are fixed in time. Bayard’s lifting [5] is a generalization
of Lozano’s  lifting [1 I] to the extended horizon case. The generalization to the cxtcndcd
horizon case is crucial for control gain reduction in order to allow practical imp]emcntations
of the approach.

In the present paper, an overview of extended horizon liftings  is givcI~, and the ZAP
controller is derived by minimizing a quadratic input cost subject to a deadbeat tracking
objcctivc  for the lifted system. The resulting ZAP controller is then demonstrated on
problems of instrument pointing, tracking, and vibration suppression.

2. BACKGROUND AND NOTATION

Consider the input/output model,

./4(2-1 )yf = B(z-l)zL/ (2.la)

n n

A(Z-l) = 1 + ~UiZ-i; B(.Z-l)  =  ~bi.Z-i (2.lb)
:=] i=]

where polynomials A and 2? are assumed to be relatively prime. It is assumed that bl # O,
so that the polynomial 2? can be factored uniquely into the form Z?(z-l ) = .z-~ bl~(z-) )
where ~(z-) ) is monic and d = 1 is the plant delay. It is desired to transform (2.1) into
the Block Multirate  Input/Output form of Albcrtos  [1], for which it will be necessary to
make the following assumptions,

A.1 The plant delay is known (and given by d = 1)

A.2 An upper bound fi ~ n is known on the plant order n

The choice d = 1 in assumption A.1 is for convenience only and is not a fundamental
restriction. In the case that d # 1, knowledge of d ensures that all subsequent expressions
can be appropriately modified without loss of generality.

Choose some horizon time N > fi. The system (2.1) is iterated to give the following system
of linear equations,

Y(k)  = AI Y(k)+  A2Y(k – 1)+ &U(k)+ I?zU(k – 1) (2.2)

where,

‘(’)= [3; ‘(’)= [211
Al = lower triangular Toeplitz,  with first column [0, –al, . . . . –an, 0,..., O]T

(2.3)

A2 = upper triangular Toeplitz,  with first row [0, . ...0, –an, . . . . –al]
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B, = lower triangular Tocplitz,  with first column [bl, b2, . . . b~, O, . ..O]T

Dz = upper triangular Tocplitz,  with first row [0, . ...0, b~, . . . Lz]

It is convenient to combine terms involving Y(k) in (2.2) and rearrange to give the following
input /out put characterization,

Block Multirate Input/Output (BMIO) Representation

Y(k) = AY(k – 1) + HU(k) + DU(k – 1) (2.4)

where,
A=(I–  Al)-’AZ (2.5a)

H=(I– AJ1.B1 (2.5b)

13=(& AJ-11?2 (2,5c)

Several advantages and properties of the BMIO representation arc discusscdin Albcrtos
[1]. Itisnoted that since Alislowcr  triangular with zeros ollthediagonal,  the quantity
(l– Al)is always invertible. Hence thequantitics  in(2.5)  always exist, andthe  BMI0
model (2.4) is a first order vector ARX process which is equivalent to the original system
(2.1). It is emphasized that only assumptions A.1 and A.2 were required to put the plant
into the desired BMIO form.

Polynomial A is divided into B to give impulse response sequence {hi},

(2.6)

The quantities hi are referred to as Markov parameters. The impulse response sequence
{hi} is not assumed to be convergent (i.e., the system may be unstable). Using the
Toeplitz  structure of Al and 131 and relation (2.6), it can be shown [1][3] that the matrix
H in (2.4) (2.5b)  can be written in terms of the Markov parameters as,

H =

This is the desired expression for H, i.e.,

(2.7)

H = lower triangular Toeplitz,  with first column [hl, h2, . . . . hN]T

Since the delay is unity by assumption (i.e., d = 1), the matrix H has a nonzero diagonal
(i.e., hl # O), and is always invertible,
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30 GENERALIZED LIFTINGS

In this section, a class of generalized Iiftings will be defined from the BMIO plant repre-
sentation (2.4).

Some ncw notation is required at this point. In general, consider some vector V G RN.
Then a partial horizon vector V. = SV is defined where S E R“ ‘N is a selection matrix
which selects a < N components of V for inclusion in V~ c R’. For this purpose, S will
be a matrix of O’s and 1’s with a a single “l” in every row, and a single “1” in only u of
its N columns.

As indicated by the expression V. = SV, the subscript %’) will be used throughout to
denote quantities which are constructed from “selected” elements of their unsubscripted
counterparts.

The selection matrix S defined above can also be thought of as being specified uniquely
by a 0,1 window vector p = [pl, . . . . pN] whose entries are,

{
1 if ith entry of V is included in V.pi =
O otherwise

The number of “l’s” in p is defined as u. Note that if the elements of p were to be plotted
versus their index, a O, 1 ‘(window” is formed over the N-step horizon, depicting which a
components of V are to be included in V8. The construction of S from p in this manner
defines a one-to-one mapping S = W(p) which will be convenient notation in the paper.

As an example, consider the plot shown in Fig. 1 for an input window pti and an output
window pv. The construction of selection matrices S. and Sy corresponding to the windows
p. and pv in Fig. 1, is shown in the example below.

Example 1 Consider the case in Fig. 1 where N = 6, and pv = [0,0,1,1,1, 0], p. =

[0, 1,1, 1,0,0]. ‘l’hen,  a, = o. =3, p; = [1, 1,0,0,0,1] (the complementary window to pv)
and,

[

0 1 0 0 0 0
s“ = W(p.)  = 0 0 1 0 0 0

0 0 0 1 0 0 1

[

0 0 1 0 0 0
Sv = w(pv) = 0 0 0 1 0 0

0 0 0 0 1 0 1
[

1 0 0 0 0 0
s; = W(p;)  = 0 1 0 0 0 0

0 0 0 0 0 1 1
Note that in the example, we have included the selection matrix S; associated with the
window p; which is defined as the O-1 complement of window pv.  This complementary
window will play an important role in the following discussion.
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Using the above notation, the following partial horizon vectors will be used in the paper,

U,(k)  ~ SUU(k);  S. : W(pU) G RUUXN

where py and p~ are specified O, 1 window vectors, and g$ is defined as the O, 1 complement
of py. Intuitively, Y; is a vector comprised of all elements of the vector Y which arc not
included in Y~.

A general class liftings is now defined from the BMIO plant representation (2.4) by making
the input nonzero only over a restricted portion of each horizon. Specifically, as depicted
in Fig. 1, the control is chosen as zero outside the window US.  Using this property, and
substituting definitions of US, YS, and Y:, in the the BMIO model (2.4) gives,

[

Y(k)
U,(k)

(3.1)

[ 1Y,(k)  = [Sy O ]  ~~~, (3.2)
8

It is shown in [3] that the lifted plant (3.1)(3.2) can be transformed by similarity to the
following more ‘useful form,

Generalized Lifting System Model

Y,(k) 1[ SVAS:  SVA(Sj)T  SVBS:
Y:(k) =  S~AS:  SjA(Sj)T  S~BS:
U.(k) o 0 0 1

[1SVHS:
+  S~HS: U.(k)

I

Y8(k – 1)
Y:(k – 1)
U8(k – 1) 1

(3.3)

■

The lifted system model (3.3) is depicted in the block diagram of Fig. 2. It is seen that
Y, and Y: form two coupied  subsystems which are driven by a common input Us.

It is noted that the liftings are defined uniquely by the choice of selection windows p. and

Pll “ An in-lPortant  class of liftings will be defined  in the next section”
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4. EXTENDED HORIZON LIFTINGS

Consider the class of liftings introduced by Bayard in [5],

Extended Horizon Lifting (OT Form):

N

m e n—l

f’-~~AA
pu = 0,...,0, 1,..., 1, p ,1,1,...,1,0, ..., O,m (4.la)

(4.lb)

where  m > 0 and 4 ~ O are arbitrary, q = O, p G RJ) is an arbitrary (or null) O-1 vector
chosen identically in both pU and pV; and n >0 is the order of the irreducible plant (2.1).
Furthermore, if the system (2.1) is obtained by a zero-order hold (ZOH) digitization of a
continuous-time plant, the integer q >0 can be chosen arbitrarily.

Remark 1 Lozano’s lifting [11] corresponds to the special case where m = O, 4 = O, p =
I,p=[o], g=o. m

Remark 2 It is noted that if one chooses m >0 in (4.1), the first control action is not
applied until m + 1 sample times into the window. Hence, the extra m * T seconds of free
time can be used to perform computations (where T is the sampling interval). Since m
can be chosen arbitrarily in this lifting, the dead time can bc matched to the real-time
computer requirements. ■

Remark 3 If one chooses 4>0 in (4.1), there are more control inputs than outputs in
the lifted system (i.e., Ov > au). It will be seen that these extra degrees of freedom in
the input can be used to advantage to minimize a quadratic control cost and hence reduce
control gains significantly compared with the case 1 = O. ■

It has been shown in [5] that the following conditions are satisfied by the extended horizon
lifting (4.1),

Output Tracking (OT) Condition
H8H~ = ~ (4.2)

Zero Annihilation (ZA) Conditions
L?s; = o (4.3a)

A(S~)T  = O (4.3b)

Substituting the 2A conditions (4.3) into (3.3) gives the simplified system model,

Extended Horizon Lifiing  System Model

Y,(k) = SVAS~Ys(k  – 1)+ HsUs(k) (4.4a)

y;(k)  = SjASfY,(k  – 1) + SjHS:U.(k) (4.4b)
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where %clectcd”  matrix H8 is defined as,

Equivalently, under the 2A conditions the systcm shown in Fig. 2 simplifies to the systcm
shown in Fig. 3. All of the kcy properties of the extended horizon lifting (4.1) can bc
understood by comparing Fig. 2 and Fig. 3. It is noted that Y~c no longer couples into the
Y, subsystem. Furthermore, the Y: subsystem has become deadbeat i.e., all of the poles
of the Y~c subsystem arc at the origin. Most importantly, (assuming H. is square), the
transmission zeros of the transfer function from Us(k) to Ys(k)  have been annihilated (i.e.,
placed at the origin). If Hs is not square, it is shown in [5] that the transmission zeros of
the “squared down” transfer function from V (where U. = H~ V) to Y, arc annihilated.

5. ZERO ANNIHILATION PERIODIC (ZAP) CONTROL

The placement of the transmission zeros to the origin by the extended horizon lifting (4.1)
allows stable invertibilit y of the transfer function from US(k) to Y~ (k ). The ZAP control
law which will be discussed next deadbeats the response Ys(k) to follow the desired Y~(k),
subject to the minimization of a quadratic control cost.

To derive the desired controller, define the output error as,

E(k) = Y~(k) - Y.(k) (5.1)

Substituting (4.4a) into (5. I) gives,

E(k) = –SVAS:Y8(k  – 1) - H8U~(k) + YJk) (5.2)

Consider the problem of forcing the error in (5.1) to zero in a single step, while minimizing
a quadratic control cost penalty, i.e.,

(5.3)

subject to
E(k) = O (5.4)

In light of the OT condition (4.2), this minimization problem can be solved uniquely to
give [5],

Zero Annihilation Periodic (ZAP) Control Law:

U:(k) = H:
(

–SVAS:Y8(k  – 1)+ Y~(k)
)

= K0Y8(k  – 1) + LOYd(k)
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(i)

(ii)

(iii)

where the corresponding feedback gains arc defined as,

1{0 = –H@YAS~’ 5.7a)

Lo = Hi
s (5.7b)

Here the superscript ‘to” is chosen to emphasize the fact that the control nulls (i.e., dead-
beats) the output. Also, in light of the OT condition, H. has full row rank and onc can
write Ht = H~(HsH~)-l  (cf., Barnett [2]).

For convenience the ZAP control law is summarized in the block diagram of Fig. 4. We
have the following result.

Lemma 1 (ZAP Control) Consider the closed-loop system arising from the extended
horizon lifting (4. 1) under 2A P conirol (5. 6). Then,

The quadratic control cost (5. 3) is minimized at each stage, subject to the deadbeat tracking
constraint (5.4),
AU closed-loop poles are at the origin (i. e., the closed-loop response is deadbeat), and hence
Y8(k) converges to Yd(k) in a single step,

The closed-loop system  is internally stable (e.g., Y;(k)  remains bounded).

Proof: Result (i) follows from the OT condition (4.2) and well known minimum-norm
properties of the Moore-Penrose inverse (cf., Barnett [2]). Now form the closed-loop system
from the simplified lifted plant (4.4) under ZAP control (5.6),

[a31=Ac’[iHl+Bclyd(k) ’5 8 )

where,
\

[

(1 - H, H~)S,AS;  O  0
A.l =

o Ol; “’=[s;-’] ‘5 ’ )
S;(1 – HS{HjSJAS~ O 0

_H@YAS;

Results (ii) and (iii) follow by substituting the OT condition (4.2) into (5.9), and noting
that the resulting closed-loop matrix ACI is stable with all of its eigenvalues  at the origin.~

Result (i) of Lemma 1“ is important because it indicates that control gains associated with
using extended horizon liftings will be significantly reduced as one ‘~extends’)  the horizon
length IV, Result (ii) indicates that the response will always be deadbeat, and result (iii)
ensures that the complementary output Y~c remains ‘(well behaved’) even though it is not
being controlled directly.

Remark 4 Instead of deadbeat control, a pole placement scheme can be obtained by
modifying the deadbeat constraint (5.4) to become E(k) = ~E(k – 1) in which case the
ZAP control becomes U;(k)  = KOY.(k  – 1) + LOYd(k) – crL013(k – 1). ●
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5. CASE STUDY

In this section, the ZAP controller is demonstrated on problems of instrument pointing,
tracking, and vibration suppression.

5.1 Instrument Model

For demonstration purposes, the instrument under consideration is depicted in Fig. 5. The
instrument consists of a main body having mass M with center of mass CP and a smaller
body having mass m with center of mass C’., It is seen that these bodies are connected by
a mast of which extends paraxially, and which may be flexible in practice. Tl~e flexibility
is modelled  by a rotational spring, with stiffness given by k. The center of mass of the
entire system is given as C (here the mass of the mast is neglected). As is typically done
in practice, the entire system is mounted on a gimbal about its center of mass at location
C’. The angle that the main body makes with the local horizontal is denoted as 6P and
the angle the small mass makes with the local horizontal is denoted as 08. The equations
of motion are given as,

where u is the control torque about C, x = [6P, 6,, ~P,~,]~, and

Values for the example are chosen as, M = 333 kg, m = 100 kg, k = 40000 Nm/rad.
The inertias are computed as JP = M “ ~ = 222 for the main body assuming a square
cross-section with 2-meter sides, and a point mass approximation is made for the smaller
mass, The center of mass is computed from the expression (assuming the mass of the mass
is negligible), MIP = me~. Specifying the mast length as 2.47 meters gives f?P = .8 meters
and 18 = 2,67.

The control objective is to drive 6P to some desired angle 19d while ensuring that the
vibrations of the mast subside, i.e., 60 -+ O where 60 = OS – OP. Several digital control
architectures will be considered. The system is digitized using a zero-order-hold (ZOH) at
a sampling period of T = .1 seconds.

5.2 PD Colocated Feedback

First, a simple proportional-derivative (PD) feedback control is considered, using measure-
ments and torque actuation colocated on the main body. The architecture is depicted in
Fig. 6. This case will provide a comparison with noncolocated  designs. The PD gains
are chosen as KP = 250 and Kd = 1000, using an ad-hoc root-locus/simulation design
approach based on minimizing settling time while damping vibrations and satisfying an
actuator saturation constraint of Iu I <250  N-m. The step response is shown in Fig. 7. It
is seen that the settling time is approximately 12 seconds, and that the torque constraint
is satisfied as desired. It is seen from Fig. 8, that the PD design can just barely support
tracking of a staircase trajectory which jumps every 11.4 seconds. Such tracking profiles
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arise often in applications requiring scanning regions of space, mosaic reconstruction of
planet surfaces, retargeting, etc.

5.3 Noncolocated  ZAP Control

As a comparison, a noncolocated  ZAP control design is considered next. As depicted in
Fig. 9, the ZAP controller is designed using feedback from 19, which is noncolocated  with
the main body torque actuator. This gives rise to a nonminimum-phase transfer function
from u to 0. which is generally much harder to control than the minimum-phase transfer
function from u to 8P in the colocated  case. For this noncolocated  design, an extended
horizon lifting of size N.= 57 is chosen where m = O, 1 = 49, p = O, n = 4, g = O. Here,
n has been chosen equal to the plant order as required by (4.1), and the integer 1 has been
adjusted to keep the torque within the allowed limits. Despite the well-known difficulties
associated with controlling a noncolocatcd/nonminimun~  -phase  transfer function, it is seen
that the settling time shown in Fig. 10 has been improved to approximately 5 seconds,
with the actuator saturation constraint ~250  Nm still satisfied.

It is noted that in addition to the improvement in settling time in Fig. 10, the actual
profile is deadbeat, i.e., aftcr 5 seconds the platform is pointing perfectly and all of the
vibrations have died out completely. A deadbeat response has clear advantages for optical
instruments which must be held steady and precisely pointed during imaging. In Fig. 11,
it is seen that the ZAP controller easily tracks the 11.4 second staircase trajectory that
the PD controller of Sect. 5.2 had trouble with. In light of the improved settling time,
it is shown in Fig. 12 that the staircase trajectory can be pushed to jump at intervals as
short as 5.7 seconds without violating the actuator saturation constraint. In practice, this
can amount to a significant savings in retargeting time and overall mission time.

It is also emphasized that since the lifted plant is stably invertible, there is no theoret-
ical limit to how fast the ZAP controller can perform retargeting, and simultaneously
dampen vibrations. This is due to the special properties of zero annihilation, and is some-
what remarkable in light of the fact that the unlifted transfer function in this case is
noncolocated/nonminimum-phase. A caveat, of course, is that sufficient torque must be
available to implement the controller. For example, using an extended horizon lifting of
size N = 18where  m=O,l=lO,  p=O,  n =4, q = O, the settling time is reduced
to 1.4 seconds. This design shown in Fig. 13, applied to tracking a 3.6 second staircase
trajectory. It is seen that due to such fast responses, the peak torque requirements have
correspondingly increased to +2500  Nm. Note that to avoid actuator saturation for this
design it would be necessary to scale down the jumps in the staircase trajectory to 1/10 rad,
or to get bigger actuators. Aside from actuator saturation issues, the practical limit on the
ZAP controller bandwidth will be determined by such factors as high-frequency parasitic,
model uncertainty, and numerical stability associated with using finite arithmetic.

5.4 ZAP Plus PD Control

An important issue is that of suppressing random noise disturbances. Since ZAP control
operates open-loop within each horizon of length N, it would be ineffective at suppressing
random disturbances having correlation length shorter than N “ 2’ seconds. When such
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disturbances are present, an effective approach is to use the ZAP controller as an outer
loop in a two-loop control design where the inner-loop controller is designed specifically
to suppress noise. One possible architecture is shown in Fig. 14, where the inner-loop is
chosen as the colocated  PD controller discussed earlier in Sect. 5.2. Since the PD cent roller
is colocatcd, it acts to add broadband damping into the system which helps to reduce the
effect of broadband noise on basebody motion.

A digital integrator z/(z  – 1) has been introduced into the architecture of Fig. 14, so that
the ZAP control will go to zero when a steady-state pointing condition is attained. This is
needed because the ZAP control cannot sustain a constant force/torque profile in steady-
state since part of each input horizon must be zero by definition. It is worth noting that
the cascaded plant can no longer be interpreted as the zero-order hold (ZOH) digitization
of a continuous-time plant, and hence the usc of an integrator restricts the choice of liftings
(4.1) to those for which q = O.

For the ZAP outer-loop design, an extended horizon lifting of size N = 58 is chosen where
m = 0,1=49,  p=O, n=5, q = 0, Note that the additional state due to the cascaded
integrator now requires the choice n = 5 as the plant order. The step response of the two-
loop control design is shown in Fig. 15. It is seen that the settling time is approximately
5 seconds. Hence, the fast response of the deadbeat ZAP controller is retained in the two-
loop design, Of course, the main advantage of using the two-loop design over using the
ZAP control alone is that the inner-loop PD controller will add damping in the presence
of random disturbances. Hence, the two-loop control architecture in Fig, 14 retains the
properties of each loop separately.

6. DISCUSSION

The design of a ZAP controller will generally require more accurate model information
than the design of a colocated  PD controller, This is essentially the price to be paid for
controlling noncolocated/nonminimum-phase  systems. However, if accurate knowledge is
not available, plant parameters can be found using adaptive methods. For example, it
is noted that the lifted dynamics (4.4a) are linear-in-the-parameters. Hence, recursive
least squares methods can be used to estimate the plant parameters and update the ZAP
controller. Alternatively, it is noted that the ZAP control law (5.6) is linear in the control
gains K“ and Lo. Stable direct adaptive control schemes for this linear  controller form  can
be developed based on the ideas in Goodwin and Sin [10], as long as certain modifications
are made to ensure that Lo is invertible on its estimate. Details can be found in [6].
Related methods for adaptive periodic control can be found in [4] and [II].

The ZAP control design requires knowledge of the plant order and delay. Since these
quantities will generally not be known exactly in a real application, there is some question
of robustness of the ZAP controller under mismatched conditions. This remains as a topic
for further investigation.

The ZAP design was developed here for single-input single-output systems. The extension
ZAP control to multivariable  systems is clearly relevant and remains to bc developed
further.

While the present paper has focused on the pointing and tracking of an entire instrument,
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[1]

[2]
[3]

[4]

[5]

[6]

[7]

simulation studies demonstrating ZAP control on the ASTREX structural model can bc
found in [7] applied to vibration suppression of the secondary mirror using the piczoclcctric
sensing/actuation embedded in the “smart strut’) tripod.

7. CONCLUSIONS

The Zero Annihilation Periodic (ZAP) controller has been applied to the problcm  of in-
strument pointing, tracking, and vibration suppression. It is shown that the response from
using the ZAP controller is always deadbeat, regardless of whether the plant is minimum or
nonminimum-phase. The deadbeat response has clear advantages for optical instruments
which must bc held steady durh~g critical periods of imaging/photon accumulation, etc..
It was also shown how the ZAP control can bc integrated into an inner/outer loop control
architccturc,  providing an effective method to retain a fast settling time while suppressing
random noise disturbances.

An important conclusion from the case study example is that a noncolocatcd  ZAP con-
troller can provide a shorter settling time than a colocated  PD controller for the same
actuator torque constraint. This is somewhat remarkable in light of the fact that the
colocatcd transfer function is minimum-phase while the noncolocatcd  transfer function is
non-minimum phase. This example clearly demonstrates the ability of ZAP designs to ef-
fectively control noncolocated/nonminimum-phase  configurations and opens up many new
possibilities for high-performance instrument pointing, vibration damping, target tracking,
rastering, control of fast steering mirrors, and other advanced optics control applications.
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